Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38496502

ABSTRACT

Strong sex differences in the frequencies and manifestations of Long COVID (LC) have been reported with females significantly more likely than males to present with LC after acute SARS-CoV-2 infection 1-7 . However, whether immunological traits underlying LC differ between sexes, and whether such differences explain the differential manifestations of LC symptomology is currently unknown. Here, we performed sex-based multi-dimensional immune-endocrine profiling of 165 individuals 8 with and without LC in an exploratory, cross-sectional study to identify key immunological traits underlying biological sex differences in LC. We found that female and male participants with LC experienced different sets of symptoms, and distinct patterns of organ system involvement, with female participants suffering from a higher symptom burden. Machine learning approaches identified differential sets of immune features that characterized LC in females and males. Males with LC had decreased frequencies of monocyte and DC populations, elevated NK cells, and plasma cytokines including IL-8 and TGF-ß-family members. Females with LC had increased frequencies of exhausted T cells, cytokine-secreting T cells, higher antibody reactivity to latent herpes viruses including EBV, HSV-2, and CMV, and lower testosterone levels than their control female counterparts. Testosterone levels were significantly associated with lower symptom burden in LC participants over sex designation. These findings suggest distinct immunological processes of LC in females and males and illuminate the crucial role of immune-endocrine dysregulation in sex-specific pathology.

2.
Nature ; 623(7985): 139-148, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37748514

ABSTRACT

Post-acute infection syndromes may develop after acute viral disease1. Infection with SARS-CoV-2 can result in the development of a post-acute infection syndrome known as long COVID. Individuals with long COVID frequently report unremitting fatigue, post-exertional malaise, and a variety of cognitive and autonomic dysfunctions2-4. However, the biological processes that are associated with the development and persistence of these symptoms are unclear. Here 275 individuals with or without long COVID were enrolled in a cross-sectional study that included multidimensional immune phenotyping and unbiased machine learning methods to identify biological features associated with long COVID. Marked differences were noted in circulating myeloid and lymphocyte populations relative to the matched controls, as well as evidence of exaggerated humoral responses directed against SARS-CoV-2 among participants with long COVID. Furthermore, higher antibody responses directed against non-SARS-CoV-2 viral pathogens were observed among individuals with long COVID, particularly Epstein-Barr virus. Levels of soluble immune mediators and hormones varied among groups, with cortisol levels being lower among participants with long COVID. Integration of immune phenotyping data into unbiased machine learning models identified the key features that are most strongly associated with long COVID status. Collectively, these findings may help to guide future studies into the pathobiology of long COVID and help with developing relevant biomarkers.


Subject(s)
Antibodies, Viral , Herpesvirus 4, Human , Hydrocortisone , Lymphocytes , Myeloid Cells , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Humans , Antibodies, Viral/blood , Antibodies, Viral/immunology , Biomarkers/blood , Cross-Sectional Studies , Herpesvirus 4, Human/immunology , Hydrocortisone/blood , Immunophenotyping , Lymphocytes/immunology , Machine Learning , Myeloid Cells/immunology , Post-Acute COVID-19 Syndrome/diagnosis , Post-Acute COVID-19 Syndrome/immunology , Post-Acute COVID-19 Syndrome/physiopathology , Post-Acute COVID-19 Syndrome/virology , SARS-CoV-2/immunology
3.
medRxiv ; 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35982667

ABSTRACT

SARS-CoV-2 infection can result in the development of a constellation of persistent sequelae following acute disease called post-acute sequelae of COVID-19 (PASC) or Long COVID 1-3 . Individuals diagnosed with Long COVID frequently report unremitting fatigue, post-exertional malaise, and a variety of cognitive and autonomic dysfunctions 1-3 ; however, the basic biological mechanisms responsible for these debilitating symptoms are unclear. Here, 215 individuals were included in an exploratory, cross-sectional study to perform multi-dimensional immune phenotyping in conjunction with machine learning methods to identify key immunological features distinguishing Long COVID. Marked differences were noted in specific circulating myeloid and lymphocyte populations relative to matched control groups, as well as evidence of elevated humoral responses directed against SARS-CoV-2 among participants with Long COVID. Further, unexpected increases were observed in antibody responses directed against non-SARS-CoV-2 viral pathogens, particularly Epstein-Barr virus. Analysis of circulating immune mediators and various hormones also revealed pronounced differences, with levels of cortisol being uniformly lower among participants with Long COVID relative to matched control groups. Integration of immune phenotyping data into unbiased machine learning models identified significant distinguishing features critical in accurate classification of Long COVID, with decreased levels of cortisol being the most significant individual predictor. These findings will help guide additional studies into the pathobiology of Long COVID and may aid in the future development of objective biomarkers for Long COVID.

4.
Cell ; 185(14): 2452-2468.e16, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35768006

ABSTRACT

COVID survivors frequently experience lingering neurological symptoms that resemble cancer-therapy-related cognitive impairment, a syndrome for which white matter microglial reactivity and consequent neural dysregulation is central. Here, we explored the neurobiological effects of respiratory SARS-CoV-2 infection and found white-matter-selective microglial reactivity in mice and humans. Following mild respiratory COVID in mice, persistently impaired hippocampal neurogenesis, decreased oligodendrocytes, and myelin loss were evident together with elevated CSF cytokines/chemokines including CCL11. Systemic CCL11 administration specifically caused hippocampal microglial reactivity and impaired neurogenesis. Concordantly, humans with lasting cognitive symptoms post-COVID exhibit elevated CCL11 levels. Compared with SARS-CoV-2, mild respiratory influenza in mice caused similar patterns of white-matter-selective microglial reactivity, oligodendrocyte loss, impaired neurogenesis, and elevated CCL11 at early time points, but after influenza, only elevated CCL11 and hippocampal pathology persisted. These findings illustrate similar neuropathophysiology after cancer therapy and respiratory SARS-CoV-2 infection which may contribute to cognitive impairment following even mild COVID.


Subject(s)
COVID-19 , Influenza, Human , Neoplasms , Animals , Humans , Influenza, Human/pathology , Mice , Microglia/pathology , Myelin Sheath , Neoplasms/pathology , SARS-CoV-2
5.
bioRxiv ; 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35043113

ABSTRACT

Survivors of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection frequently experience lingering neurological symptoms, including impairment in attention, concentration, speed of information processing and memory. This long-COVID cognitive syndrome shares many features with the syndrome of cancer therapy-related cognitive impairment (CRCI). Neuroinflammation, particularly microglial reactivity and consequent dysregulation of hippocampal neurogenesis and oligodendrocyte lineage cells, is central to CRCI. We hypothesized that similar cellular mechanisms may contribute to the persistent neurological symptoms associated with even mild SARS-CoV-2 respiratory infection. Here, we explored neuroinflammation caused by mild respiratory SARS-CoV-2 infection - without neuroinvasion - and effects on hippocampal neurogenesis and the oligodendroglial lineage. Using a mouse model of mild respiratory SARS-CoV-2 infection induced by intranasal SARS-CoV-2 delivery, we found white matter-selective microglial reactivity, a pattern observed in CRCI. Human brain tissue from 9 individuals with COVID-19 or SARS-CoV-2 infection exhibits the same pattern of prominent white matter-selective microglial reactivity. In mice, pro-inflammatory CSF cytokines/chemokines were elevated for at least 7-weeks post-infection; among the chemokines demonstrating persistent elevation is CCL11, which is associated with impairments in neurogenesis and cognitive function. Humans experiencing long-COVID with cognitive symptoms (48 subjects) similarly demonstrate elevated CCL11 levels compared to those with long-COVID who lack cognitive symptoms (15 subjects). Impaired hippocampal neurogenesis, decreased oligodendrocytes and myelin loss in subcortical white matter were evident at 1 week, and persisted until at least 7 weeks, following mild respiratory SARS-CoV-2 infection in mice. Taken together, the findings presented here illustrate striking similarities between neuropathophysiology after cancer therapy and after SARS-CoV-2 infection, and elucidate cellular deficits that may contribute to lasting neurological symptoms following even mild SARS-CoV-2 infection.

6.
Am J Phys Med Rehabil ; 101(1): 48-52, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34686631

ABSTRACT

OBJECTIVE: This report describes persistent symptoms associated with post-acute COVID-19 syndrome (PACS) and the impact of these symptoms on physical function, cognitive function, health-related quality of life, and participation. DESIGN: This study used a cross-sectional observational study design. Patients attending Mount Sinai's post-acute COVID-19 syndrome clinic completed surveys containing patient-reported outcomes. RESULTS: A total of 156 patients completed the survey, at a median (range) time of 351 days (82-457 days) after COVID-19 infection. All patients were prevaccination. The most common persistent symptoms reported were fatigue (n = 128, 82%), brain fog (n = 105, 67%), and headache (n = 94, 60%). The most common triggers of symptom exacerbation were physical exertion (n = 134, 86%), stress (n = 107, 69%), and dehydration (n = 77, 49%). Increased levels of fatigue (Fatigue Severity Scale) and dyspnea (Medical Research Council) were reported, alongside reductions in levels of regularly completed physical activity. Ninety-eight patients (63%) scored for at least mild cognitive impairment (Neuro-Qol), and the domain of the EuroQol: 5 dimension, 5 level most impacted was Self-care, Anxiety/Depression and Usual Activities. CONCLUSIONS: Persistent symptoms associated with post-acute COVID-19 syndrome seem to impact physical and cognitive function, health-related quality of life, and participation in society. More research is needed to further clarify the relationship between COVID-19 infection and post-acute COVID-19 syndrome symptoms, the underlying mechanisms, and treatment options.


Subject(s)
COVID-19/complications , Cognition Disorders/virology , Physical Functional Performance , Quality of Life , Social Participation , COVID-19/physiopathology , Cross-Sectional Studies , Humans , Retrospective Studies , Surveys and Questionnaires , Post-Acute COVID-19 Syndrome
8.
Arch Phys Med Rehabil ; 96(4): 633-44, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25461821

ABSTRACT

OBJECTIVE: To test the hypothesis that macrophage migration inhibitory factor (MIF) is elevated in the circulation of individuals with acute spinal cord injury (SCI) compared with uninjured individuals. DESIGN: Prospective, observational pilot study. SETTING: Academic medical center. PARTICIPANTS: Adults with acute traumatic SCI (n=18) and uninjured participants (n=18), comparable in age and sex distribution. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: The primary outcome measure was the plasma MIF levels. Potential correlations were examined between MIF and clinical/demographic variables. The secondary outcome was to determine if other immune mediators were elevated in participants with acute SCI and if their levels correlated with the MIF. RESULTS: MIF was significantly elevated in subjects with acute SCI compared with control subjects at 0 to 3 (P<.0029), 4 to 7 (P<.0001), and 8 to 11 (P<.0015) days postinjury (DPI). At 0 to 3 DPI, levels of cytokines interleukin-6 (P<.00017), interleukin-9 (P<.0047), interleukin-16 (P<.007), interleukin-18 (P<.014), chemokines growth-related oncogene α/chemokine (C-X-C motif) ligand 1 (P<.0127) and macrophage inflammatory protein 1-ß/chemokine (C-C motif) ligand 4 (P<.0015), and growth factors hepatocyte growth factor (HGF) (P<.0001) and stem cell growth factor-ß (P<.0103) were also significantly elevated in subjects with acute SCI. With the exception of interleukin-9, all of these factors remained significantly elevated at 4 to 7 DPI; a subset (interleukin-16, HGF, stem cell growth factor-ß) remained elevated throughout the study. Within individuals, MIF levels correlated with HGF (P<.018) and interleukin-16 (P<.01). CONCLUSIONS: These data demonstrate that MIF is significantly elevated in subjects with acute SCI, supporting further investigation of MIF and other inflammatory mediators in acute SCI, where they may contribute to primary and secondary functional outcomes.


Subject(s)
Macrophage Migration-Inhibitory Factors/blood , Spinal Cord Injuries/immunology , Academic Medical Centers , Adult , Aged , Aged, 80 and over , Chemokines/blood , Cytokines/blood , Female , Humans , Male , Middle Aged , Prospective Studies , Spinal Cord Injuries/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...